Introduction to Functions

You may have noticed that we have been evaluating or "plugging-in" lots of numbers to find the corresponding y-values.  We have been doing this to find points on the graph (x, y).  This process can be streamlined using function notation.
This new notation above is read, "y is equal to f of x".  A function is a rule that uniquely assigns one output to every one input. So, at this point we can think of our non-vertical lines as functions.


The domain of a function is the set of inputs, usually the x-values.  The range of a function is the set of outputs, usually the y-values.
Evaluate the given function.


Find x.

Do not let the function notation discourage you, it takes some time to get used to.  The main thing to remember is that y = f(x); sometimes x is given and sometimes y or f(x) is given.

Graph the given linear function.
Word Problem. Bill has a popular software company which sells copies of its program for $149.  If the initial start up cost for the company was $10,000 and it costs $12 to produce each copy:
   a.  Find a cost function C(x) that models this business.
   b.  Find a revenue function R(x) that models this business.
   c.  Find the profit function P(x) using your functions above.
   d.  Find the profit when 1000 programs are produced and sold.
   e.  Find the number of programs that must be sold to break even.

Solution:
a. Cost Function - Include all fixed and variable costs of production.
b. Revenue Function - Include all proceeds from sales.
c. Profit Function - Revenue less cost of production.
d. Here x = 1,000 programs produced and sold.
e. Break Even - Occurs when profit is equal to zero.
Video Examples on YouTubeIntro to Functions PlayList












Parallel and Perpendicular Lines

Many of the problems that we will encounter in this section involve parallel or perpendicular lines.  To study this we must focus on the slopes of the lines.


InteractiveParallel Lines ]

There is notation that corresponds to these ideas, for example,
reads "m perpendicular".  To find the slope of the perpendicular line simply reciprocate the number and change the sign.

InteractivePerpendicular Lines ]

Find the corresponding perpendicular slope.
Of course, just use the same slope if you are asked to find the slope a parallel line.

Are the lines parallel, perpendicular or neither?
Find the slope of the line perpendicular.
Now we use these facts and the formula for equations of lines to find equations given certain geometric information. Recall,
Example: Find the equation of the line perpendicular to y = −1/4 x + 2 passing through the point (−1,−5).
      

This three step process using slope-intercept form always works. We could find this equation using point-slope form as well as demonstrated below.

Example: Find the equation of the line perpendicular to y = −1/4 x + 2 passing through the point (−1, −5).
    
Notice that the answer y = 4x − 1 is the same using either method.


Find the equation of the line. (Using slope-intercept form.)
  
Find the equation of the line. (Using point-slope form.)
  
Video Examples on YouTube: