Showing posts with label elementary algebra. Show all posts
Showing posts with label elementary algebra. Show all posts

Elementary Algebra (Algebra 1) Sample Exams

A complete set of sample exams covering topics found in the first 7 chapters of the online textbook Elementary Algebra.



You will find mobile friendly solutions as well as links to printable copies in pdf format. Please feel free to copy and paste anything you find here into your LMS.

Elementary Algebra Exam #3

Click on the 10 question exam covering topics in chapters 5 and 6. Give yourself one hour to try all of the problems and then come back and check your answers.



10. The length of a rectangle is 4 centimeters less than twice its width. The area is 96 square centimeters. Find the length and width. (Set up an algebraic equation then solve it)

 
---

Elementary Algebra Exam #1

Click on the 10 question exam covering topics in chapters 1 and 2. Give yourself one hour to try all of the problems and then come back and check your answers.


Simplify:



Solve:



Solve and graph all solutions on a number line.




10. The perimeter of a rectangle is 54 feet.  If the length is 3 feet less than twice the width, find the dimensions of the rectangle. (Set up an algebraic equation and use it to solve this problem.)
Creative Commons License

Solving Linear Equations: Part II

In this section we will solve more complicated linear equations.  If you can, combine same side like terms first then opposite side like terms using the techniques that we have learned in part I. Caution: A common error is to add or subtract a term on the same side of the equal sign.  Only use the opposite operation on opposite sides of the equal sign.
Solve.

Not all equations work out to have a single solution.  Some have infinitely many solutions such as x = x.  Here any number the we chose for x will produce a true statement.  Also, some equations have no solution such as x + 1 = x.

   Contradiction – An equation that will always be false has no solution.
   Identity – An equation that will always be true has any real number, R, as a solution.
It is quite common to encounter linear equations that require us to distribute before combining like terms.

Solve.
Literal equations are difficult for many people because there will be more than one variable.  Just remember that the letters are place holders for some number, so the steps for solving are the same.  Isolate the variable that it asks us to solve for.

Word Problem: The internet connection at the hotel costs $5.00 to log on and $0.20 a minute to access.  If Joe's total bill came to $18.00 then how many minutes did Joe spend on the internet? (Set up an algebraic equation and solve it)

Video Examples on YouTube: