Showing posts with label simplify. Show all posts
Showing posts with label simplify. Show all posts

Saturday, November 17, 2012

Properties of the Logarithm

The following properties of the logarithm are derived from the rules of exponents.
The properties that follow below are derived from the fact that the logarithm is defined as the inverse of the corresponding exponential.

To familiarize ourselves with the properties we will first expand the following logarithms. (Assume all variables are positive.)


Expand.
Notice that there is no explicit property that allows us to work with nth roots within the argument of the logarithm.  To simplify these, first change the root to a rational exponent then apply the power rule.
When expanding, notice that we must use the same base throughout the expression. For the next set of problems we will first use the properties to expand then substitute in the appropriate values as the last step.
Evaluate
Expanding is useful for learning the rules and properties associated with logarithms but as it turns out, in practice, condensing down to a single logarithm is the skill that we really need to focus on.

Rewrite as a single logarithm (condense).
Tip: When simplifying these down to one logarithm use only one operation at a time and work from left to right. Combining or skipping steps usually leads to mistakes. Do not race, work slowly, and pay attention to notation.
Evaluate (Round to the nearest ten thousandths where appropriate).
Simplify.
YouTube videos:
















Tuesday, November 6, 2012

Complex Rational Expressions


It turns out that we have all the tools necessary to simplify complex algebraic fractions. The numerator and denominator of these rational expressions contain fractions and look very intimidating.  We will outline two methods for simplifying them.

Method 1: Obtain a common denominator for the numerator and denominator, multiply by the reciprocal of the denominator, then factor and cancel if possible.
Method 2: Multiply the numerator and denominator of the complex fraction by the LCD of all the simple fractions then factor and cancel if possible.

To illustrate what happened after we multiplied by the LCD we could add an extra step.

For the following solved problems, both methods are used. Choose whichever method feels most comfortable for you.

Simplify using method 1.                                 Simplify using method 2.
Video Examples on YouTube: